
Unreal Model & Animation File Format

Author: Bob Berry
 Contact: bob@vsmm.org
Last Modified: 2/14/99

Overview

While you can import .DXF brushes directly into your map in UnrealED for construction, you are unable to
dynamically spawn such objects in your world. In addition to that, the .DXF format does not contain
animation information. The solution to creating reusable animated models for your worlds is to compile
them into your packages using Unreal's proprietary data format.

The only available converters at the time of this writing are a 3D Studio Max to Unreal converter, called
3DS2UNR, developed by Legend Entertainment and a Quake2 model viewer that exports to Unreal format
called Crusher md2 Model Viewer, developed by Tom Condor. The purpose of this document is to describe
the file formats in detail for others who wish to develop a converter.

Files

Unreal stores the geometry and animation data in two separate files. These files are interdependent of each
other, as Unreal needs to read both of them at the same time to construct an accurate mesh. The file names
for these should be in the format of:

_d.3d : Geometry Data
_a.3d : Frame (animation) Data

Each file contains a block of header data followed by a series of geometry or frame data blocks. The
geometry data format stores information in triangles with numbered unique vertices. The animation data
format stores the position of the vertices at each frame. I will refer to the numbered unique vertices stored in
the geometry data file as the "Vertex Map" to avoid confusion with the vertex positions.

The blocks labeled "Unused" are read by the importer, but are not referenced anywhere in Unreal. It is safe
to zero them.

Data Types

The following is a list of useful data types and sizes as defined by Unreal.

unsigned char BYTE 8-bit unsigned.
unsigned short _WORD 16-bit unsigned.
unsigned int DWORD 32-bit unsigned.
signed int INT 32-bit signed.
signed int UBOOL Boolean 0 (false) or 1
float FLOAT 32-bit IEEE floating point.

THE _D.3D FILE

The overall format of the geometry data file is as such:

mailto:bob@vsmm.org

[Geometry Header]
[Triangle Description 1]
[Triangle Description 2]
[...]
[Triangle Description N]

Geometry Header - Begins at: 0x00h (36 bytes long)

0x00h Number of Polygons (Triangles) - 2 bytes _WORD
The total number of triangles in the mesh

0x02h Number of Vertices - 2 bytes _WORD
The total number of unique vertices

0x04h Bogus Rotation - 2 bytes _WORD
Unused

0x06h Bogus Frame - 2 bytes _WORD
Unused

0x08h Bogus Normal X - 4 bytes DWORD
Unused - zero out

0x0Ch Bogus Normal Y - 4 bytes DWORD
Unused - zero out

0x10h Bogus Normal Z - 4 bytes DWORD
Unused - zero out

0x14h Fix Scale - 4 bytes DWORD
Unused - zero out

0x18h Unused 1 - 4 bytes DWORD
Unused - zero out

0x1Ch Unused 2 - 4 bytes DWORD
Unused - zero out

0x20h Unused 3 - 4 bytes DWORD
Unused - zero out

0x24h Unused - 12 bytes -
Unused - zero out
This block is not even read by UnrealED during import

Triangle Definition - Begins at: 0x30h (16 bytes per triangle)

0x30h Vertex 1 - 2 bytes _WORD
The first unique vertex this triangle is made of

0x32h Vertex 2 - 2 bytes _WORD
The second unique vertex this triangle is made of

0x34h Vertex 3 - 2 bytes _WORD

The third unique vertex this triangle is made of

0x36h Triangle Type - 1 byte BYTE
Bit vector of triangle type
(See Appendix A: Triangle Types)

0x37h Color - 1 byte BYTE
Color for flat and gouraud shading

0x38h Texture Triangle Coordinates 1, U - 1 byte BYTE
0x39h Texture Triangle Coordinates 1, V - 1 byte BYTE
First (u,v) texture coordinate for triangle
(See Appendix B: Texture Triangles)

0x3Ah Texture Triangle Coordinates 2, U - 1 byte BYTE
0x3Bh Texture Triangle Coordinates 2, V - 1 byte BYTE
Second (u,v) texture coordinate for triangle
(See Appendix B: Texturing)

0x3Ch Texture Triangle Coordinates 3, U - 1 byte BYTE
0x3Dh Texture Triangle Coordinates 3, V - 1 byte BYTE
Third (u,v) texture coordinate for triangle
(See Appendix B: Texturing)

0x3Eh Texture Number - 1 byte BYTE
Offset to textures imported by #execs in the .uc file
(See Appendix B: Texturing)

0x3Fh Flags - 1 byte BYTE
Unused - zero out

[Repeat Triangles as necessary]

THE _A.3D FILE

The overall format of the frame data file is as such:

[Frame Header]

[Frame Data Set 1]
[Frame Data Set 2]
[...]
[Frame Data Set N]

Frame Header - Begins at: 0x00h (4 bytes long)

0x00h Number of frames - 2 bytes _WORD
Total number of animation frames (1 for non-animated models)

0x02h FrameSize - 2 bytes _WORD

Frame Data - Begins at: 0x04h (4 bytes * Vertices per frame)

0x04h First vertex position of first frame - 4 bytes INT

Packed (x,y,z) coordinate of first unique vertex
(See Appendix C: Vertices and Appendix D: Frames)

0xnnh Last unique vertex of first frame

[Repeat vertex list for new frames as necessary]

Appendix A: Triangle Types

The type of the triangle is expressed as a bit vector. However, the first few bits define the exact nature of
the triangle and therefore only one type must be used. The remaining bits are extra effects and may be
added at will.

Triangles may have ONE of the following:
Normal one-sided 0
Normal but two-sided 1
Translucent two-sided 2
Masked two-sided 3
Modulation blended two-sided 4
Weapon triangle 8

Add any combination of the following numbers for extra effects:
Full brightness, no lighting 16
Flat surface, don't do bMeshCurvy 32
Environment mapped 64
No bilinear filtering on this poly's texture 128

E.g. 84 (2 + 16 + 64) = Translucent two-sided, full brightness, environment mapped polygon. Now
wouldn't that be interesting....

Appendix B: Texturing

Each triangle has a triangular portion of a texture mapped to it. This process is called 'skinning'. The three
texture coordinates specified for every triangle defines the triangular segment of the texture to copy and
paste to the triangle.

To import the model in unreal you must also import a texture, otherwise your model will show up invisible
in the mesh viewer. Each model can have any number of textures imported along with it. This is done in
the .uc file that you must create to direct Unreal to compile the model into your new package. Here's an
example of the directives needed to import your model and textures:

#exec MESH IMPORT MESH=test ANIVFILE=wee_a.3d DATAFILE=wee_d.3d X=0 Y=0 Z=0
Specifies the frame data file (ANIVFILE) and geometry data file (DATAFILE)

#exec MESH ORIGIN MESH=test X=0 Y=0 Z=0
Use this for uncentered models

#exec MESH SEQUENCE MESH=test SEQ=All STARTFRAME=0 NUMFRAMES=20
#exec MESH SEQUENCE MESH=test SEQ=Idle STARTFRAME=1 NUMFRAMES=5
#exec MESH SEQUENCE MESH=test SEQ=Walk STARTFRAME=6 NUMFRAMES=14

Animation sequences, specifies the name of the sequence, the beginning frame and how many frames it is.

#exec MESHMAP NEW MESHMAP=test MESH=test
Creates a new meshmap that corresponds to a mesh.

#exec MESHMAP SCALE MESHMAP=test X=0.1 Y=0.1 Z=0.2
Scales the meshmap

#exec TEXTURE IMPORT NAME=tex FILE=Textures\MyPix_01.PCX GROUP=Skins FLAGS=0
Imports a texture into a group called 'Skins', names the texture, and sets special flags (i.e. translucent)

#exec MESHMAP SETTEXTURE MESHMAP=test NUM=1 TEXTURE=tex
Assigns the texture to be used on the model.

The important thing here is the NUM=1 seen on the last line. That is the texture index number the triangle
definition refers to.

Appendix C: Vertices

The packed vertex should be stored in a single 4-byte signed int. The XY and Z coordinates of the vertex
are 4-byte floats and bit shifted for compression. Be careful of platform specific variations of type sizes.

Borrowed from 3ds2unr:
Packed Vertex = (int(v.X * 8.0) & 0x7ff) | ((int(v.Y * 8.0) & 0x7ff) << 11) | ((int(
v.Z * 4.0) & 0x3ff) << 22)

Appendix D: Frames

Each frame data block contains the list of unique vertex locations. As the animation progresses, the vertices
move to different locations, however the vertex map specified in the geometry data format stays the same.
The vertices must be listed in the same order for each from and each vertex must be listed, even if there has
been no change in position. This maintains the integrity of the vertex map.

E.g. For two polygons:
Frame 1
Vertex 1 (12,15,23)
Vertex 2 (-15,23,-35)
Vertex 3 (100,-53,85)
Vertex 4 (41,15,21)
Vertex 5 (15,73,35)
Vertex 6 (78,-62,-23)
Frame 2
Vertex 1 (42,25,33)
Vertex 2 (65,33,35)
Vertex 3 (120,53,55)
Vertex 4 (45,-15,31)
Vertex 5 (122,-133,155)
Vertex 6 (-78,102,43)
The vertex map still reads
Triangle 1
1,2,3
Triangle 2
4,5,6

	archive.org
	Unreal Model & Animation File Format

